
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 9, 341-362 (1989)

THREE-DIMENSIONAL UNSTEADY FLOW SIMULATIONS:
ALTERNATIVE STRATEGIES FOR A VOLUME-AVERAGED

CALCULATION

CHIN-YUAN PERNG AND ROBERT L. STREET
Environmental Fluid Mechanics Laboratory, Stanford University, Stanford CA 94305, U 3 . A

SUMMARY

This work builds on a SIMPLE-type code to produce two numerical codes of greatly improved speed and
accuracy for solution of the Navier-Stokes equations. Both implicit and explicit codes employ an improved
QUICK (quadratic upstream interpolation for convective kinematics) scheme to finite difference convective
terms for non-uniform grids. The PRIME (update pressure implicit, momentum explicit) algorithm is used as
the computational procedure for the implicit code. Use of both the ICCG (incomplete Cholesky decompo-
sition, conjugate gradient) method and the MG (multigrid) technique to enhance solution execution speed is
illustrated. While the implicit code is first-order in time, the explicit is second-order accurate. Two- and three-
dimensional forced convection and sidewall-heated natural convection flows in a cavity are chosen as test
cases. Predictions with the new schemes show substantial computational savings and very good agreement
when compared to previous simulations and experimental data.

KEY WORDS Unsteady Fluid flow Navier-Stokes Simulation SIMPLE PRIME QUICK ICCG MG

INTRODUCTION

REMIXCS’,’ was a robust code which reproduced experimentally observed features in 3D lid-
driven flow in a cavity and was validated further by experiments conducted by Rhee et aL3
REMIXCS was based on the solution of a weak form of the Navier-Stokes equations in primitive
variables via a volume-averaged formulation. Implicit Euler time-stepping was used in the
SIM PLE4 algorithm, which performed an iterative solution of a set of finite difference equations
through line-by-line relaxation within each time step. Alternate direction sweeps on the pressure
calculations were used to reduce the CPU time in REMIXCS, but the three-dimensional implicit
computations were still time-consuming.

Variations of the SIMPLE method, such as SIMPLER,4 SIMPLEC’ and SIMPLEC with a
multigrid method,6 have been widely used in attempts to solve flow problems more efficiently.
However, all of these variations still retain the semi-implicit concept; under-relaxation factors are
thus indispensible to prevent numerical schemes from blowing up. The search for the problem-
dependent optimum relaxation parameters can never be easy; therefore non-optimal values are
used and the code features are not fully exercised.

The REMIXCS method enjoys particular advantages due to the staggered variable placement
and its use of a method developed for non-uniform grids, as well as demonstrated
success in reproducing complex physics. Yet new techniques for solving various portions of the
problem have been introduced, e.g. PRIME, ICCG and MG. In addition, the implicit REMIXCS

027 1-209 1/89/030341-22s 1 1 .OO
KJ 1989 by John Wiley & Sons, Ltd.

Received 12 June 1987
Revised 22 January 1988

342 C.-Y. PERNG AND R. L. STREET

was only first-order accurate in time. Accordingly, we set out in this work to take REMIXCS,
which was a state-of-the-art code in the early 1980s, to a more effective and accurate level made
possible by new developments. This paper reports then on a pair of codes, SEAFLOSl-I and
SEAFLOSl-E (Stanford Environmental Fluid Mechanics Laboratory Simulator, version 1,
implicit and explicit codes), with origins in REMIXCS and the SIMPLE algorithm, which were
developed to provide greatly improved speed and accuracy.

Important features of the implicit code include the implementation of the ICCG method and the
MG technique, together with an efficient algorithm which is essentially identical to PRIME.* The
PRIME algorithm differs from SIMPLE in three aspects. First, it solves an exact pressure
equation. Second, no relaxation parameter is needed in either the momentum equations or the
pressure equation. Third, the new velocity field is directly updated after the pressure field is
obtained by solving the pressure equation. Other features, such as new QUICK formulations to
handle uniform and non-uniform grids and new consistent expressions for the major coefficients in
the solver, are incorporated to further improve the code performance.

The explicit code contains the same advantageous features as the implicit code except that we
employ a second-order-accurate predictor-corrector scheme for time-marching. The availability
of the explicit code enables us to step through time without significant time truncation error and
portray accurately the evolution of a flow field.

The subsequent sections of this paper discuss: first, the test problems of this study and their
governing equations; second, the numerical treatments for the new codes; and third, the concepts
of the ICCG and the MG methods. Finally, the results and conclusions are presented.

DEFINITION OF PHYSICAL PROBLEMS USED AS EXAMPLES

From the numerical viewpoint, two- and three-dimensional flows in cavities serve as ideal
prototype non-linear problems for testing numerical codes. Geometric simplicity and well defined
flow structures make these flows very attractive as test cases for new numerical techniques and
also provide benchmark solutions to evaluate various differencing schemes and problem
formulations.

Figure 1 displays the pertinent geometry and flow definitions. For the present study, three-
dimensional unsteady laminar motion of water within a cubic cavity is considered. In the first
(forced convection) case the driving force of the flow is a belt moving at the top of the cavity at a
speed which produces a flow Reynolds number of 3200 (Re= belt speed x cavity width/average
viscosity). In the second (natural convection) case the upstream and downstream sidewalls are

Figure 1. Geometry and nomenclature of the problem

3D UNSTEADY FLOW SIMULATIONS 343

cooled and heated respectively relative to the initial fluid temperature. Non-slip and impermeable
boundary conditions apply to the solid walls.

For the purpose of deriving appropriate finite difference equations, it is convenient to write the
governing equations in conservative form:

where Fj = puj; for 4 = ui and r = ,u one gets the momentum equation, while for 4 = 1 and r = 0 one
obtains the continuity equation. Using 4 = T and r = k/cp produces the energy equation. S,
contains the appropriate source terms.

NUMERICAL PROCEDURE-CODE BASICS

The general equation (1) is the basis for deriving the finite difference equations required in this
work. These equations are obtained by volume integration of (1) about cells surrounding nodes of
computational grids. The methods for the accomplishment of this procedure and the rules
regarding variable locations and discretizations have been documented by Patankar.4 Here we
describe a new implicit code, a new explicit code and the numerical features underlying them. A
special feature of the modified REMIXCS codes, now called SEAFLOS1-I and SEAFLOSl-E, is
that an improved QUICK scheme for non-uniform grids was used in the finite difference
formulation of all convective terms.

The implicit code

‘p’ takes the form (in the notation of Reference 4)
The implicit Euler scheme is used for time-stepping and the result for a cell centred about node

A p 4 p = C A n p 4 n p + b* (2)
The pressure equation is obtained by substituting velocities into a discretized continuity equation
and can be written as

a p p p = C a n p P n p + b*, (3)
where the subscript ‘np’ denotes a neighbour of a centre node ‘p’ and the summation is taken over
all six neighbours in the 3D case. The general form for the six coefficients will be presented later. ‘b‘
and ‘b*’ are appropriate source terms arising from finite difference schemes.

The iterative sweeps within each momentum equation contribute only a fairly small share to the
convergence of the entire fluid flow; on the other hand, finding the correct solution for the pressure
field represents the most important factor in the overall convergence. Thus we have implemented
the essential elements of the PRIME algorithm.* Because of the relative unimportance and
wastefulness of driving the momentum equations to a tight convergence at each step in the overall
iteration, PRIME uses only one sweep of the momentum equations after the pressure field is
obtained by solving the exact pressure equation.

Because of its strong ellipticity and the associated Neumann boundary condition, the pressure
equation poses a considerable challenge to most conventional iterative schemes. In order to
overcome these difficulties, high-efficiency pressure equation solvers are required. Whereas the
PRIME algorithm was coupled with a point SOR iteration method in Reference 8, we employ two
alternative schemes in our approach, namely and ICCG method and the MG technique for the
solution of the pressure equation.

344 C.-Y. PERNG AND R. L. STREET

To illustrate the numerical procedure, the computational steps are given for the velocity
component in the x-direction, u. Because of the staggered grid system, the pressure nodes for a up
cell are pp and pe. First, equation (2) can be written as

2. Solve equation (3) for pressure with the source term b* as

b* = - (pu*AA), + (pu*AA), - (pu*AA), + (pu*AA), - (pw*AA), +(pw*AA),, , (6)
where AAi is the inflow or outflow surface of the cell boundary under consideration.

equation (5):
3. Find the velocity by employing new pressure values obtained in step 2, together with

uP=uP* +AAe(pp-Pe)/AP. (7)

4. Calculate other fluid properties if necessary.
5. Return to step 1 until convergence to finish one time step.

There are several features to this computational procedure:

1. The pressure equation is exact.
2. No iterative scheme is employed within each momentum equation and under-relaxation

3. The pressure equation is efficiently solved by either the ICCG or the MG method.
factors are not necessary.

The explicit code

discretized equations takes the form
We use a second-order predictor-corrector scheme for time-marching; the resulting set of

where A Vp is the volume of cell 'p'. Again the pressure equation is derived by substituting the u, u
and w equations into a discretized continuity equation and collecting terms. The pressure
equation has the same form as equation (3) but the source terms are different. Accordingly, the
algorithm for the explicit code is:

1.

2.
3.
4.
5.

6.

Calculate all the coefficients for the discretized momentum equations using information at
time step n.
Solve the pressure equation to obtain the predicted pressure field at time step n+ 1/2.
Use the predicted pressure field to find the predicted velocity fields at n + 1/2.
Compute fluid properties if needed.
Calculate all the coefficients for the momentum equations using information at time step
n + 1/2.
Solve pressure equation for final pressure at time step n+ 1.

3D UNSTEADY FLOW SIMULATIONS 345

7. Update velocity fields using pressure from step 6.
8. Calculate other fluid properties if necessary.

Either the ICCG or the MG technique is applied to solve the pressure equation.

The new QUICK formulations

Figure 2 illustrates the non-uniform grid set-up used in our codes. For illustration we consider
the x-direction. Vector quantities are calculated at points marked with an ‘ x ’, while scalar
quantities are at the main grid points marked with an ‘O’, which also marks a cell boundary for
calculating vector quantities. Node P is the central grid point on which we focus our attention, and
nodes E and W denote the east and west neighbours of node P. Each x is located midway between
the two corresponding 0’s. It follows that the cell boundary is not centred between the two x ’s.
Therefore grid weighting factors should be included in estimating the flux across the boundary.
More importantly, these factors should be incorporated into the QUICK formulations to take
account of the non-uniformity of the grid system and represent more accurately the convective
terms in the discretized Navier-Stokes equations. The new QUICK formulations are:

for u>O

4i-1 Axi+Axi-, Axi 1 ri(1 - r i)

Axi + Axi -
source

and

4i- 1 1 (1 - r i) - r i - . l (l - r i - l) Axi-,

Notes: r,= 3 /Ax, = wP I AX^.^
Figure 2. Non-uniform grid set-up

346 C.-Y. PERNG AND R. L. STREET

for u<O

4, =[r i - r i (l - T i)
Axi + Axi +

4 i + 2 1 - * [r i (l - r i) AXi
Axi+ 1 Axi+Axi+l

and

source

Each of these expressions locally satisfies the general one-dimensional quadratic polynomial. The
source terms will automatically adjust themselves to differently stretched grids and still ensure
satisfaction of the ‘all-positive coefficients’ rule.4 If the terms are properly collected, not only do
these new formulations involve no more calculations than REMIXCS, but they also represent the
convective terms more accurately in the discretized Navier-Stokes equations.

When the QUICK scheme is applied to boundary cells, a proper numerical boundary scheme is
needed to assign values to the terms such as 4i - 2 , 4j + 2 , etc. In this study we use a second-order
extrapolation, i.e. + i - 2 = 24i- , - 4i . Other similar terms can be obtained by analogy.

Consistent expressions for the major coejicients (Ae, A,, A,, A,, A,, A,,)

The direction of the local flux is crucial in choosing a stable and reasbnably accurate scheme to
finite difference the convective terms. It is a custom to obtain expressions for positive and negative
flux directions, then let the computer choose the maximum one among those expressions to
represent a certain coefficient, as done in the modified QUICKS.'.^ This strategy works well when
applied to interior cells but is inconsistent and ambiguous at boundary cells. For comparison, the
new and old expressions respectively are

(A,),,, = M : C2 - Me- C, + M ; C , , + viscous term

(Ae)old = max[(G,C,), (G,C, , - G, C8L (G,C2 + G , C ,), (- C e c a)] +viscous term,

(14)

(1 5)

and

where Cj (j = 1-36) are the geometric coefficients from a 3D QUICK formulation, Gi is the flux
across a cell boundary, M : =(Gi+ (Gi /) /2 and M ; =(Gi-(Gi1)/2 (i=e, w, n, s, d, u).

Here we just list A, as an example. The remaining five coefficients take the same form as A, and
can be quickly obtained by analogy. It can be seen that the nevt expression (14) requires far fewer
algebraic operations* than the old expression (1 5). Moreover, the flux directions are taken care of

* Readers might suspect that the new A, contains extra operations in calculating MT and M ; . Actually, M ; and M i are
required in both the old and the new codes.

3D UNSTEADY FLOW SIMULATIONS 347

by M and M ; , so the new expressions apply to boundary cells without ambiguity. This feature
helps simplify the specification of boundary conditions.

NUMERICAL PROCEDURE-COMPUTATION METHODS

The ICCG method

The matrices that arise from finite element or finite difference methods are usually large and
sparse. They tend to have large spectral radii and fairly uniform distributions of eigenvalues. For
solution of such linear equation systems, direct methods are reliable but very costly for three-
dimensional problems. The classical iterative methods such as Gauss-Seidel, SOR, etc. are cheap if
the iterations converge, but for many problems convergence is slow or non-existent, making the
iterative methods expensive or useless."

The technique of ICCG has two parts. First, it uses incomplete Cholesky decomposition of the
original matrix to obtain a preconditioning matrix to modify the original system of linear
equations. This preconditioning matrix possesses two characteristics. It is as sparse as its parent
matrix and the values of most entries are close to those of the original matrix. These characteristics
combine to yield a modified system whose matrix is very close to the identity matrix except for a
few extreme eigenvalues. Second, the conjugate gradient method is applied to the preconditioned
system of linear equations to eliminate quickly the few extreme eigenvalues and eigenvectors. We
then end up solving a linear system with an 'almost identity' matrix.

The discretized pressure equation can be rewritten in matrix form as

Ap = r,

where A is a matrix of order (M x N x K)' and M , N and K are the number of grid points in each
direction. The beauty of this large sparse matrix A is that it is symmetric positive-definite, which
makes the ICCG method even more attractive. The details regarding the ICCG method are
documented in References 10-15, which are good sources to consult. Although there are
shortcomings in the CG method, ReidI5 showed that for solving large sparse matrices the 'poor
reputation' of CG is not justified. Moreover, the IC technique for preconditioning produces major
improvements over the plain CG method. The only apparent shortcomings of the ICCG method
are (1) a requirement for more memory than, say, a modified line SOR and (2) more difficult
programming. Neither is a serious handicap for today's machines or programmers.

The M G technique

Basic concept. The multigrid (MG) technique has been demonstrated as an efficient iterative
solver for elliptic equations. The motivation of using the MG method is that traditional iterative
techniques are very efficient in smoothing out the high-frequency error components whose
wavelength is comparable with the mesh size, but inefficient in reducing low-frequency compo-
nents with long wavelengths relative to the mesh. Therefore, by employing several levels of grids,
one is able to solve for the high-frequency components on a fine grid and for the low-frequency
components on a coarse grid. As a result the overall convergence rate is greatly accelerated.

There are a number of variants of the MG method. Interested readers should consult References
16-21. In this study we focus on CS (correction scheme) and FAS (full approximation scheme)
which are equally well applicable to linear or spatially linearized equations. If for simplicity we
assume that two grids are used, the overall procedure of the CS scheme is as follows.

First, the pressure equation can be rewritten as

L'P'= F', (16)

348 C.-Y. PERNG AND R. L. STREET

where Lf is a difference operator containing all the coefficients of the pressure equation and Pf
represents the final converged solution to equation (1 6). Then:

1. Apply Gauss-Seidel iteration to (16) on the fine grid for a few iterations until the convergence
slows down. One gets a defect solution pf to (16) and lets V f = P f - p f be the error value.

2. Switch to the coarse grid and solve there the defect equation

L" v " = I ; (F' - Lfpf), (17)

where V is the approximate value of V on the coarse grid and I ; is a restriction operator
from the fine grid to the coarse grid.

3. From step 2 one gets an approximate solution uc to equation (17). Then we make corrections
on pF by

P i e , = Pfold + If: V c , (18)

where If: represents an interpolation operator from the coarse grid to the fine grid and ILu' is
an approximation to the error V f on the fine grid.

4. Repeat the above steps until a converged solution is obtained.

From the above procedure we can see that we solve for the error term on a coarse grid and make

As to the full approximation scheme (FAS), we simply replace (17) with
corrections on a fine grid. This is the basic idea of the MG-CS scheme.

LCP' = z; (Ff - Lf pf) + L'(IFpf) (19)

Pfnew=Pfold+le(Pc-zFPf 1. (20)

and (18) with

From equations (1 9) and (20) we can see that in FAS, instead of solving for the correction term
vc, we solve for the 'full' current approximation p' and only the changed value pc-ZFpf is
interpolated back to the fine grid.

Restriction and interpolation. The restriction operator Z; is used to transfer fine grid values to
the next coarser grid, whereas the interpolation operator ZE is used to interpolate coarse grid
values to the next finer grid. In this study both operators are derived by using a bilinear
interpolation. Figure 3 shows the coarse and fine grid arrangement for MG computation. The
pressure point sits in the centre of each cell and the fluxes are on the appropriate cell boundaries.
Let 'f' and 'c' denote fine and coarse grid points respectively. Then for restriction the pressure
operator takes the form

Pic,jc=~C~if,j~+pi~+l,j~+Pif,j~+l+pif+~,jf+11~

where if = 2ic - 2 and j f = 2jc - 2.
For interpolation they are

3D UNSTEADY FLOW SIMULATIONS

c--t---t-t-+-+-+-+--

--*--I-+-+-+-+-*--

--+- +-+-+-+-+-+--

349

X

0

0

X

0

0

X

0

0

X
0

0

X

0

X

X
0

0

X
0

0

x
0

0

X

0

0

X

0

0 0 0 0 0 0 0 0 0 0

x X X X

x Coarse Grid
o Fine Grid

Figure 3. Grid set-up for MG

X

A special restriction procedure is needed to transfer the coefficients of the pressure equation
from the fine to the coarse grid. This can be done quite straightforwardly by noting that these
coefficients are actually contributed by the mass flux and the diffusion across the cell boundaries.
Therefore a linear interpolation does a good job. The coefficients are

A,@, jc)=+[A,(if; jf)+A,(if, jf- l)], (26)

A,(ic, jc)=$[A,(if, jf)+A,(if- 1, jf)], (27)

A,(ic, jc)=A,(ic- 1, jc), (28)

A,(ic, jc)=A,(ic, jc- l), (29)

A,(ic, jc)=A,(ic, jc)+Aw(ic, jc)+A,(ic, jc)+A,(ic, jc), (30)
with if = 2ic - 2 and j f = 2jc - 2.

ANALYSIS OF RESULTS

Basic information

The flow conditions studied involve a forced convection flow with Re = 3200 for both two- and
three-dimensional cases and a 2D sidewall-heated natural convection flow at a Grashof number

350 C.-Y. PERNG AND R. L. STREET

Gr=2.44x lo8 (based on the cavity width and the temperature difference of the two sidewalls).
Some relevant information on the code execution follows:

1. For two-dimensional forced convection flow both implicit and explicit codes simulated the
lid-driven case up to 900 s of real time, at which time the flow is close to steady state, and
comparisons in velocity profiles and flow fields were made. For the 2D natural convection
flow both codes simulated a sidewall-heated condition to 60 s of real time. Our objectives
were to compare CPU time savings achieved by the new code and the transient phenomena
resolved by different codes.

2. For the 3D case, because of the migration and meandering of TGL (Taylor-Gortler-like)
vortices3 which constantly influence the flow structure at different cross-sections, there is no
steady state condition; therefore the three-dimensional simulation focuses on transient
states. Our goal was to observe the evolution of flow structures such as the migration ofTGL
vortices which clearly represent the strong three-dimensionality of this cavity flow. In the 3D
case both codes simulated only the half-cavity flow (from the endwall plane to the symmetry
plane) and imposed no-flux, free-slip boundary conditions at the centre plane. Simulating the
half-cavity is justifiable because the two endwalls serve as a kind of symmetric perturbation
to induce TGL vortices. Thus in numerical experiments on a full cavity, conducted by the
present authors, perfect symmetry exists because there are no unsymmetric perturbations.

3. The ICCG method used in our work is classified as ICCG(0) in the terminology of Meijerink
et L I I . , ’ ~ which means that ‘NO’ extra diagonal is included in the matrix after incomplete
Choleskey decomposition. Throughout our implicit code computations we take 20 iter-
ations over ICCG in solving the pressure equation. This has the effect of reducing the
residual norm of pressure to about 0.5-1.0% of that before invoking the ICCG solver, and is
a convenient and simple way of proceeding. An alternative way to stop the ICCG iterations
is to use the ‘recursive’ residual norm’ in the ICCG procedure, stopping when the norm is
reduced to 05% or so. This requires additional calculations and tests but does not appear to
offer significant benefit over the simple approach. For 3D isothermal flow using a 35 x 35
x 20 non-uniform grid, the pressure equation solver takes up 50.6% of the CPU time within
one ‘global sweep’, while the ICCG iterations take 48.5% of the CPU time when the code is
compiled with the automatic vectorization ‘ON. If we turn the automatic vectorization
option off, the ICCG iterations take 69.4% of the CPU time. This fact demonstrates two
points. First, solving the pressure equation occupies most of the computational work;
second, running ICCG in a vector machine contributes to the improvement of the code
speed.

4. A mesh size ratio (h k + &) of two is used in the MG technique. The ‘slow convergence rate’ is
usually recognized when the ratio of the residual norms at two consecutive iterations at the
same grid level, e:’ ‘/e: > 6, at which time the solution procedure is switched to the next
coarser grid. Convergence at a coarse grid level is defined to occur when e, of this level is
smaller than a certain proportion of its counterpart ek+ at the next finer level, i.e. e, < qe,+ ’.
In this study 6 = 0.6 and q = 0 2 were employed. As can be seen later, three, four or five grid
levels were used, i.e. MG(3), MG(4) or MG(5), for testing code speeds.

The computational fields are presented as particle track plots. They are generated from
instantaneous velocity fields which were held constant for a period of 8 s while these tracks were
computed.

For the comparison of code speeds the ‘normalized CPU time’ used in the tables is defined as the
‘the actual CPU time normalized by the number of grid nodes and the real simulation time’. We
first compare the performance of the new code with the ICCG solver against REMIXCS; we then

3D UNSTEADY FLOW SIMULATIONS 351

compare the new codes using ICCG with those using the MG solver. All calculations were
performed on a CRAYX-MP, using the CTSS operating system on a single processor.

Demonstration of accuracy

For non-uniform grid simulations we need enough grid points near the boundaries to extract
energy from the driven lid and resolve flow structures. In this study the gridlines were distributed
smoothly in physical space (normalized to OIX; y; ZI 1) from an interval of 0.005 near the
boundaries to about 0.06 in the cavity centre. In this way the 2D grid resolution near the
boundaries is slightly finer than that used in the 130x 130 uniform grid M G method.*

For the 3D flow a direct comparison of the implicit code simulation with experimental results is
depicted in Figure 4. The U - and V-velocities are taken along the vertical and horizontal
centrelines respectively in the symmetry plane (see Figure 1). The experimentally measured data”
are 5 min averages at the fully developed state. Since the flow of this study achieves its fully
developed state about 6 min after start-up, the simulated velocity profiles are 3 min averages
during the time period 7-10 min. The match between the two is excellent. Figures 5 and 6 show the
corresponding flow structures in the symmetry plane and in a plane 34.5 mm from and parallel to
the QTMS surface but 60 s apart in time. They clearly show the migration of the TGL vortices and
their influence on the corner vortex. A complete description of the formation and meandering is
given in References 1, 3 and 22. Experimental flow visualization3 showed that TGL vortices are
very time-dependent; therefore a time-accurAte code is essential to portray the evolution of these
features correctly.

Figure 7 displays a comparison of 2D simulations between our work and the Ghia et a l l 9
results. U and Vare vertical and horizontal centreline velocity profiles respectively. It can be seen

Y
UB

-1.0 -0.8 -0.6 -0.4 -0.2 a0 0.2 0.4 06 0.8 l.Ol,o
1.0 ’ ’ ’

0.8 1 - U-.V-vel.(simuloled) { 0.8

o,61 0.4 0.31/ 0.2

0.6

10.4

0 2

0 0 - ii
Ua

0 2 -
l o o
UB
-0 2 -0 2

-0 4 - 0 4

-0 6 -06

-0 8 -0 8

-I 0 -I 0
-10 -08 4 6 - 0 4 -02 00 02 0.4 a6 08 10

-=j -0.4 , . ,A! ; , ,;r”
-0.6 -0.3 D -0.6

-0.8 -0.8

-I .o -1.0
-1.0 -0.8 4 6 -0.4 -0.2 00 02 0.4 a6 08 1.0

Figure 4. Normalized U- and V-velocity profiles along vertical and horizontal centrelines for Re= 3200, 3D simulation

* Because of the control volume formulation used in this study, the uniform grid space of 130x 130 is equal to that of
129 x 129 employed by Ghia et al.’’

352 C.-Y. PERNG AND R. L. STREET

Figure 5(a). Flow field at the symmetry plane; t = 540 s, Re = 3200

Figure 5(b). Flow field at the plane 34.5 mm from downstream sidewall; t = 540 s, Re = 3200

that both implicit and explicit non-uniform grid results agree very well with uniform multigrid
simulations.

Figures 8(a) and 8(b) are particle track plots of flow fields resulting from the non-uniform grid
ICCG and the uniform grid MG methods. Table I shows the sizes of three secondary eddies
obtained by different solution techniques. Figure 8 and Table I further demonstrate the agreement
in the sizes and strengths of the primary circulating cells and the three secondary eddies. It is
remarkable that the 40 x 40 non-uniform grid solution reproduces the 130 x 130 uniform grid
solution so well.

3D UNSTEADY FLOW SIMULATIONS 353

Figure qa). Flow field at the symmetry plane; t = 600 s, Re = 3200

' ' 1 I I I I I I I I I I 1 1 ' ' ' ' I 1 I I I I I I I I I I I
"'I I I I I I I I I I ' I ' ' ' I I I I I I I I I I l l

i I i i I 1 ' ' ' ' ' ' J I I I I I I lliii'

Figure qb). Flow field at the plane 34.5 mm from downstream sidewall; t = 600 s, Re = 3200

Since we solve an exact pressure equation, a reasonably time-accurate solution can be obtained
with a relatively large time step when compared with the explicit code. Figure 9 displays velocity
and temperature profiles along the centreline in a sidewall-heated natural convection problem.
Figure 10 shows the comparisons between the implicit code and the explicit code for a 40 x 40 x 20
grid. If we take the result from the explicit code as a benchmiirk, we can say that under our
simulated conditions a time-accurate solution is obtainable by the implicit code and with
considerable CPU time savings.

354

1.

0.

C.-Y. PERNG AND R. L. STREET

-1.
-1.0 0. 0 1.0

Figure 7. Normalized U - and V-velocity profiles along vertical and horizontal centrelines, for Re= 3200,2D simulation,
t=900s

Figure 8(a). 2D flow field from the simulation using a 40 x 40 non-uniform grid Re= 3200, t =900 s

3D UNSTEADY FLOW SIMULATIONS 355

Figure 8(b). 2D flow field from the MG simulation using a 130 x 130 uniform grid; Re = 3200, t = 900 s

Table I. Quantitative comparisons on secondary eddies at Re = 3200

ICCG MG
Secondary eddy* (40 x 40)t (130 x 130)$

~~~ 

Ghia 
(129 x 129g 

0.3445 0.3516 
0.4 1 70 0.4180 
0.3020 0.3047 
0.2453 0.2461 
0.2090 0.2187 

0.3406 
0.4 102 
02844 
0.2305 
0.2057 

* See Figure 1 for definition. 
t ICCG (40 x 40): explicit code with ICCG as a pressure solver using a 40 x 40 non- 
uniform grid at t=900 s. 
$ MG (130 x 130): explicit code with MG as a pressure solver using a 130 x 130 uniform 
grid at t =900 s. 
4 Ghia (129 x 129): results of Ghia et al., multigrid solution using a 129 x 129 uniform grid 
at steady state. 

Speed improvements 

From Table I1 it can be seen that the savings are substantial. The most impressive two are the 
3D isothermal simulation, in which the speed is five times faster than of REMIXCS, and the 2D 
sidewall-heated problem, which represents an almost seven-fold improvement of the code speed. 
In view of this we expect the CPU time savings will be even greater in 3D non-isothermal flows. 
This occurs because the ICCG method takes the pressure field as a whole. It does not depend on 
the direction of the sweeps as the old line-by-line iterative solver does. Thus in the new method the 
whole pressure field converges more uniformly. Of course the alternating direction or ‘bidirection’ 
sweep method was used in solving the discretized pressure equation in REMIXCS to improve the 
code speed by a factor of four in CPU timeZ compared with the unidirection line-by-line sweep in 



0.01 

0.009 

O.M#l 

0.007 

0.006 

0.005 

0.004 

0.003 

0 0.2 0.4 0.6 0.8 1 

Figure 9(a). Velocity profile along horizontal centreline for Gr = 2.44 x lo8, grid 40 x 40, t =60 s 

- Explicit 
x Implicit(DT = 0.5sec.) 
0 Implicit(DT = 1.0sec.) 

bottom 

0.01 I 

-0.003 

-0.00) 

-0.005 

-0.006 

-0.007 

-0.008 - 
-0.m - 

-0.00s - 
-0.m - 
-0.007 - 
-0.m - 
-0.009 - 
-0.01 I I 1 1 1 1 1 1 1 



top - Explicit 
1 x Implicit(DT = 0.5sec.) 

0 Implicit(DT = l.Oiec.) 
profile - 2 .  - 0 

bottom 

- 
- 

- 

0 0.2 0.4 0.6 a0 1 

Figure 9(c). Temperature profile along horizontal centreline for Gr = 2.44 x lo8, 'grid 40 x 40, t = 60 s 

_. Explicit 
x lmplicit(DT = 0.5sec.) 

4 q-E?e 0 Implicit(DT = l.0sec.) 

n 
4 

4 

9 

8 

7 

6 
h s. 
G 5  

4 

S 

2 

1 

- 
- 

0 ;  I I I I 1 I I I 1 

0 0.2 0.4 0.6 0.8 1 

Figure 9(d). Temperature profile along vertical centreline for Gr = 244 x lo8, grid 40 x 40, t = 60 s 



358 C.-Y. PERNG AND R. L. STREET 

A ~ ~ g ~ g ~ ~ ~ ~ ~ , ~ ~ e e ~ g ~ g e -  
1 4  ' ' '- 

0.9- - Explicit( DT = 0.04sec.) 

. + Implicit(DT = 1 O m . )  

a7 - 
0.8 - 
0 3 -  
a4 - 
0.3- 

02- 

-a1 - 
-0.2- 
-0.3- 
-0.4 - 
45 - 
-0.6 - 

Figure 10. Normalized LT- and V-velocity profiles along vertical and horizontal centrelines for SEAFLOS1-E and 
SEAFLOS1-I; Re = 3200, t = 60 s, grid 40 x 40 x 20 

Table 11. Computational performance of the implicit codes* 

Normalized Normalized 
CPU time for CPU time for Percentage 

Grid size7 REMIXCS SEAFLOSI-I saving (%) 

(1) 30x30 6.43 x 10-4 1.51 x 10-4 77 
(2) 40x40 8.31 x 10-4 2.06 x 10 - 4 75 
(3) 3 0 x 3 0 ~ 1 0  2.54 x loe3 5.12 x 10-4 80 
(4) 40x40 8.4oX 1 0 - 3  1.33 x 10-3  84 

~ ~ ~~ 

* In this comparison the real time is 720 s for the 2D case and 60 s for the 3D case. 
t Cases( 1)-(3) are isothermal forced convection, while case(4) is sidewall-heated natural 
convection with Gr= 2.44 x 10'. In cases (1)-(3) the time step is 1 s for the first 10 s and 2 s 
for the rest of the simulation time. The time step is 1 s throughout the simulation in 
case (4). 

earlier codes (e.g. REBUFFS23.24); accordingly the new code using the ICCG method is faster by a 
factor of 20 (or 95% CPU time saving for cases tested) than the REBUFFS code. 

Table TI1 displays the performance of the explicit code and compares the CPU time needed with 
that of REMIXCS for the same number of time steps and the same duration of simulation time. 
Here the focus is on time accuracy and the evolution of the flow start-up. Since new velocity fields 



3D UNSTEADY FLOW SIMULATIONS 359 

Table 111. Computational performance of SEAFLOS1-E and REMIXCS 

Normalized Normalized 
CPU time for CPU time for Percentage 

Grid size* REMIXCS SEAFLOS1-E savings (YO) 

(1) 30 x 30 1.32 x lo-’ 1.31 x 10-3 90 
(2) 30x30 1.14 x lo-’ 1aox 10-3 91 
(3) 30 x 30 1.02 x 10- * 7.81 x 10-4 92 
(4) 3 0 x 3 0 ~ 1 0  1.16 x lo-’ 1.03 x 1 0 - 3  91 

* The time step At is (1) 0.05 s, (2) 0.075 s, (3) 0.10 s, (4) 0.10 s. All the simulations were 
carried out up to t = 20 s. 

are obtained directly, without iteration, after the correct pressure field is obtained by solving a 
Poisson equation, a substantial amount of CPU time has been saved by the explicit code. The only 
restriction of the explicit code is that it should observe the ‘all-positive coefficients’ rule in order to 
have stable time-marching and to produce physically realistic sol~t ions.~ In a more conservative 
manner, the explicit code was actually run under the condition that the Courant number be no 
greater than unity, because this guarantees a time-accurate solution. Under comparable con- 
ditions the explicit code is approximately ten times faster for all cases. 

Table IV displays comparisons of the CPU time needed for the two new codes, SEAFLOSI-E 
and SEAFLOS1-I, under the specified simulation condition. Time steps used for SEAFLOSl-E 
have been tested so that the Courant condition is met. Case(2) of Table IV shows the CPU time 
used to achieve the status shown in Figure 10. We can see from Table IV and Figure 10 that a time- 
accurate solution can be obtained with the implicit code under these conditions, and the 
percentage saving of the CPU time is substantial. 

Comparison of ICCG and M G  implementations 

Tables V and VI show the performance of the implicit and explicit codes for either the ICCG or 
the MG method using two uniform grids. We can see that MG(5) further improves the code speed 
by a factor of four for the explicit code and a factor of three for the implicit code. Table V also 
shows that the computational gains are not much between using four and five levels of grids, but 
the CPU time difference is large between three and four levels of grids. This also implies that the 
low-frequency smoothing rates are approximately the same by using six node points (five grid 
levels) or ten node points (four grid levels) in each direction of the coarsest grid for this problem. 
Since the pressure equation has been linearized, both FAS and CS are equally applicable to this 
problem, and the CS scheme requires less CPU time than FAS does. 

Table IV. Computational performance of SEAFLOSI-I and SEAFLOSl-E* 

Normalized Normalized 
CPU time for CPU time for Percentage 

Grid size? SEAFLOS1-E SEAFLOS1-I savings (%) 

40 x 40 1.36 x 601 x 10-4 56 
40 x 40 x 20 3.03 10-3 8.41 x 10-4 12 

* Both cases are isothermal forced convection with Re=3200. 
t For the explicit code the time step is 0.05 s for 2D simulation and 0.04 s for 3D 
simulation. The implicit code uses 1 s as its time step throughout the simulation. 



360 C.-Y. PERNG AND R. L. STREET 

Table V. Computational performance of SEAFLOS-E using ICCG and MG* 
~~ 

Normalized 
Methodt grid size 

ICCG 
MG(5)CS 
MG(4NS 
MG(3)CS 

ICCG 
MG( 5)-CS 
MG(4)-CS 
MG(3)-CS 

130 x 130 
130 x 130 
130x 130 
130 x 130 

66 x 66 
66 x 66 
66 x 66 
66 x 66 

Normalized 
CPU time 

439 x 10-3 
1.12 10-3 
1.16 x 10-3 
1.53 x 10-3 

Simulation 
time (s) Time step (s) 

0-60 0.05 
0-60 0.05 
0-60 0.05 
(Mo 0.05 

9.04 x 10-4 
3.17 x 10-4 
3.20 x 10-4 
3.80 x 10-4 

0-300 015 
0-300 015 
0-300 015 
0-300 015 

* All the cases are isothermal forced convection with Re= 3200. 
t MG(n)-CS means n levels of grids and the correction scheme is employed. 

Table VI. Computational performance of SEAFLOS-I using ICCG and MG* 

Normalized Normalized Simulation 
Method? grid size CPU time time (s) Time step (s) 

ICCG 130 x 130 2.66x 1 0 - 3  0-60 0 5  
MG(5)-FAS 130 x 130 9.23 x 10-4 ( M O  0 5  
MG(5)-CS 130 x 130 8.69 x 10-4 ( M O  0 5  

ICCG 66 x 66 1.05 x 10-3 0-60 1 .o 
MG(5)-FAS 66 x 66 440 10-4 0-60 1 .o 
MG(5)-CS 66 x 66 4.63 x 10-4 0-60 1 *o 
* All the cases are isothermal forced convection with Re = 3200. 
t MG(n)-FAS means n levels of grids and the full approximation scheme is employed. MG(n)CS means 
n levels of grids and the correction scheme is employed. 

At the present time, use of the MG technique depends on employment of a uniform grid, while 
ICCG does not impose that restriction. Thus, for the case summarized in Table I, the ICCG 
calculation with a 40 x 40 non-uniform grid provides equivalent accuracy with 18% of the CPU 
time required for the 130 x 130 uniform grid MG calculation. 

Lastly, the questions of ‘how to set convergence criteria’ and ‘how many iterations to carry out 
in the pressure equation solver’ are answered by application of the ‘art’ of the experienced user. 
Any change of these factors might alter the code speed somewhat. Better combinations of the 
above factors may exist. Interested readers may wish to conduct some tests and decide for 
themselves. 

CONCLUSIONS 

The results presented show that both the explicit code SEAFLOSl-E and the modified implicit 
code SEAFLOSI-I lead to substantial computational savings when compared with REMIXCS. 
The availability of the two versions (explicit and implicit) of the codes enables us either to step 
rapidly through time with some loss of time accuracy or to step accurately through time to observe 
the evolution of special structures. The incomplete Cholesky decomposition, conjugate gradient 
method is highly recommended for the solution of the pressure field, especially in a non-uniform 



3D UNSTEADY FLOW SIMULATIONS 361 

grid formulation. The combination of the ICCG or the MG method with the PRIME algorithm 
for the implicit code proved to be very efficient in driving the entire flow to convergence, and 
reasonably time-accurate solutions can be obtained economically. 

ACKNOWLEDGEMENTS 

The support of the National Science Foundation under Grant MSM-83-12061 from the Fluid 
Dynamics and Hydraulics Program, Directorate of Engineering, and of the Division of Engineer- 
ing, Mathematical and Geosciences, Office of Basic Sciences, Department of Energy under Grant 
DE-FG03-84ER13240, is gratefully acknowledged. The computation was accomplished at the 
National Magnetic Fusion Energy Computer Center through an allocation from DOE. The 
authors express their thanks to Prof. J. H. Ferziger for his constructive suggestions on the MG 
technique. They are most indebted to a referee for bringing to their attention that the implicit code 
algorithm is essentially identical to PRIME. 

REFERENCES 

1. C. J. Freitas, R. L. Street, A. N. Findikakis and J. R. Koseff, ‘Numerical simulation of three-dimensional flow in a 

2. C. J. Freitas, ‘Nonlinear transport phenomena in a.3-D cavity flow: a numerical investigation’, Ph.D. dissertation, 

3. H. S. I(hee, J. R. Koseff and R. L. Street, ‘Flow visualization of a recirculating flow by rheoscopic liquid and liquid 

4. S. V. Patankar, Numerical Hear Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, 1980. 
5. J. P. Van Doormaal and G. D. Raithby, ‘Enhancements of the SIMPLE method for predicting incompressible fluid 

6. V. M. Theosossiou and A. C. M. Sousa, ‘An efficient algorithm for solving the incompressible fluid flow equations’, Znt. 

7. B. P. Leonard, ‘A stable and accurate convective modelling procedure based on quadratic upstream interpolation’, 

8. C. R. Maliska and G. D. Raithby, ‘Calculating 3-D fluid flows using non-orthogonal grid’, Proc. Third Int. Con5 on 

9. A. Pollard and L. W. Siu, ‘The calculation of some laminar flows using various discretization schemes’, Comput. 

10. C. P. Jackson and P. C. Robison, ‘A numerical study of various algorithms related to the preconditioned conjugate 

11.  P. Concus, G. H. Golub and D. P. OLeary, ‘A generalized conjugate gradient method of numerical solution of elliptic 

12. P. M. Gresho, ‘Time integration and conjugate gradient methods for the incompressible Navier-Stokes equations’, in 

13. D. S .  Kershaw, ‘The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear 

14. J. A. Meijerink and H. A. van der Vorst, ‘An iterative solution method for linear systems of which the coefficient matrix 

15. J. K. Reid, ‘On the method of conjugate gradients for the solution of large sparse systems of linear equations’, Proc. 

16. A. Brandt, ‘Multi-level adaptive solutions to boundary-value problems’, Math. Comput. 31, 333-390 (1977). 
17. A. Brandt, J. E. Dendy, Jr. and H. Ruppel, ’The multigrid method for semi-implicit hydrodynamics codes’, J .  Comput. 

18. A. Brandt, ‘Multigrid techniques: 1984 guide, with applications to fluid dynamics’, uon Karman Institute, Lecture 

19. U. Ghia, K. N. Ghia and C. T. Shin, ‘High-Re solutions for incompressibleflow using the Navier-Stokes equations and 

20. R. E. Philips and F. W. Schmidt, ‘A multilevel-multigrid technique for recirculating flows’, Numer. Heat Transfer, 8, 

21. S .  P. Vanka, ‘Block-implicit multigrid solution of Navier-Stokes equations in primitive variables’, J. Comput. Phys. 65, 

22. A. K. Prasad, C. Y. Perng and J. R. Koseff, ‘Some observations of the influence of longitudinal vortices in a lid-driven 

cavity’, Int. j .  numer. methodspuids, 5, 561-575 (1985). 

Stanford University, 1986. 

crystal techniques’, Exp. Fluids, 2, 57-64 (1984). 

flows’, Numer. Heat Transfer, 7 ,  147-163 (1984). 

numer. methods fluids, 6, 557-572 (1986). 

Comput. Methods Appl. Mech. Eng. 19, 59-98 (1979). 

Numerical Methods in Laminar and Turbulent Flows, Seattle, 1983, pp. 656666. 

Methods Appl. Mech. Eng., 35, 293-313 (1982). 

gradient method‘, Int. j .  numer. methods eng., 21, 1315-1338 (1985). 

partial differential equations’, Lawrence Berkeley Laboratory Publ. LBL-4604, 1973. 

Finite Elements on Water Resources, Springer, New York, 1986, pp. 3-27. 

equations’, J. Comput. Phys., 26, 43-65 (1978). 

is a symmetric M-matrix’, Math. Comput. 31, 148-162 (1977). 

Con5 on Large Sparse Systems of Linear Equations, Academic Press, New York, 1971, pp. 231-253. 

Phys., 34, 348-370 (1980). 

Series, 1984-04, 1984, pp. 1-183. 

a multigrid method‘, J .  Comput. Phys., 48, 387-411 (1982). 

573-594 (1985). 

138-158 (1986). 

cavity flow’, Proc. First Nar. Fluid Dynamics Congr., Cincinnati, Ohio, 1988, pp. 288-295. 



362 C.-Y. PERNG AND R. L. STREET 

23. J. R.  Koseff, R. L. Street, P. M. Gresho, C. D. Upson, J. A. C. Humphrey and W. M. To, ‘A three-dimensional lid-driven 
cavity flow: experiment and simulation’, Proc. Third lnt. Con$ on Numerical Methods in Laminar and Turbulent Flows, 
Seattle, 1983, pp. 564-581. 

24. P. LeQuere, J. A. C. Humphrey and F. S. Sherman, ‘Numerical calculation of thermally driven two-dimensional 
unsteady laminar flow in cavities of rectangular cross section’, Numer. Heat Transfer, 4, 249-283 (1981). 


